我们通过基于压缩感测和多输出(MIMO)无线雷达来解决材料缺陷的检测,这些材料缺陷在层状材料结构内部。这里,由于层状结构的表面的反射导致的强杂波通常经常使缺陷挑战的缺陷。因此,需要改进的缺陷检测所需的复杂信号分离方法。在许多情况下,我们感兴趣的缺陷的数量是有限的,并且分层结构的信令响应可以被建模为低秩结构。因此,我们提出了对缺陷检测的关节等级和稀疏最小化。特别是,我们提出了一种基于迭代重量的核和$ \ ell_1- $规范(一种双重重量方法)的非凸法方法,与传统的核规范和$ \ ell_1- $常态最小化相比获得更高的准确性。为此,迭代算法旨在估计低级别和稀疏贡献。此外,我们建议深入学习来学习算法(即,算法展开)的参数,以提高算法的准确性和汇聚速度。我们的数值结果表明,该方法在恢复的低级别和稀疏组分的均方误差和收敛速度方面优于常规方法。
translated by 谷歌翻译
The Government of Kerala had increased the frequency of supply of free food kits owing to the pandemic, however, these items were static and not indicative of the personal preferences of the consumers. This paper conducts a comparative analysis of various clustering techniques on a scaled-down version of a real-world dataset obtained through a conjoint analysis-based survey. Clustering carried out by centroid-based methods such as k means is analyzed and the results are plotted along with SVD, and finally, a conclusion is reached as to which among the two is better. Once the clusters have been formulated, commodities are also decided upon for each cluster. Also, clustering is further enhanced by reassignment, based on a specific cluster loss threshold. Thus, the most efficacious clustering technique for designing a food kit tailored to the needs of individuals is finally obtained.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
基于优化的元学习旨在学习初始化,以便在一些梯度更新中可以学习新的看不见的任务。模型不可知的元学习(MAML)是一种包括两个优化回路的基准算法。内部循环致力于学习一项新任务,并且外循环导致元定义。但是,Anil(几乎没有内部环)算法表明,功能重用是MAML快速学习的替代方法。因此,元定义阶段使MAML用于特征重用,并消除了快速学习的需求。与Anil相反,我们假设可能需要在元测试期间学习新功能。从非相似分布中进行的一项新的看不见的任务将需要快速学习,并重用现有功能。在本文中,我们调用神经网络的宽度深度二元性,其中,我们通过添加额外的计算单元(ACU)来增加网络的宽度。 ACUS可以在元测试任务中学习新的原子特征,而相关的增加宽度有助于转发通行证中的信息传播。新学习的功能与最后一层的现有功能相结合,用于元学习。实验结果表明,我们提出的MAC方法的表现优于现有的非相似任务分布的Anil算法,约为13%(5次任务设置)
translated by 谷歌翻译
开发有效的自动分类器将真实来源与工件分开,对于宽场光学调查的瞬时随访至关重要。在图像差异过程之后,从减法伪像的瞬态检测鉴定是此类分类器的关键步骤,称为真实 - 博格斯分类问题。我们将自我监督的机器学习模型,深入的自组织地图(DESOM)应用于这个“真实的模拟”分类问题。 DESOM结合了自动编码器和一个自组织图以执行聚类,以根据其维度降低的表示形式来区分真实和虚假的检测。我们使用32x32归一化检测缩略图作为底部的输入。我们展示了不同的模型训练方法,并发现我们的最佳DESOM分类器显示出6.6%的检测率,假阳性率为1.5%。 Desom提供了一种更细微的方法来微调决策边界,以确定与其他类型的分类器(例如在神经网络或决策树上构建的)结合使用时可能进行的实际检测。我们还讨论了DESOM及其局限性的其他潜在用法。
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
最近,由于许多用例的性能要求严格的性能要求,基于意图的管理正在受到电信网络的良好关注。文献上的几种方法采用电信域中的传统方法来满足KPI的意图,可以将其定义为封闭环。但是,这些方法考虑了每个闭环相互独立的环路,从而降低了组合的闭环性能。同样,当需要许多闭环时,这些方法不容易扩展。在许多领域,多机构增强学习(MARL)技术在许多领域都表现出了巨大的希望,在许多领域中,传统的闭环控制效果不足,通常用于循环之间的复杂协调和冲突管理。在这项工作中,我们提出了一种基于MARL的方法,以实现基于意图的管理,而无需基础系统模型。此外,当存在相互矛盾的意图时,MARL代理可以通过优先考虑重要的KPI来暗中激励循环,而无需人工互动。已经在网络模拟器上进行了实验,以优化三种服务的KPI,我们观察到拟议的系统的性能良好,并且在资源不足或资源稀缺时能够实现所有现有的意图。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译